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Hahn-Jordan Decomposition for Gleason Measures 

Anatolij Dvure~enskij 1 

Received January 14, 1987 

The possibility of the Hahn-Jordan decomposition for n-finite signed measures, 
where n is a cardinal, defined on a quantum logic of all closed subspaces of a 
Hilbert space whose dimension is a nonmeasurable cardinal # 2, is investigated. 

1. I N T R O D U C T I O N  A N D  P R E L I M I N A R I E S  

A s igned measure  on a quan tum logic  Af(H)  o f  all  c losed  subspaces  
o f  a Hi lbe r t  space  H (not  necessar i ly  sepa rab le )  over  the field C o f  real  or  
complex  number s  is a m a p  m: ~ T ( H ) - - > [ - ~ ,  ~ ]  such that :  (1) m ( 0 ) = 0 ;  
(2) m is o--addit ive on all sequences  o f  mu tua l ly  o r thogona l  subspaces  o f  
~ f ( H ) ;  (3) it a t ta ins  at most  one o f  the poss ib le  values  •  A posi t ive  
s igned measu re  is said to be a measure .  

The we l l -known  theo rem of  G lea son  (1957) says that  any  finite measure  
m on ~ ( H )  o f  a s epa rab le  Hi tber t  space  H, d im H r 2, is in one- to -one  
c o r r e s p o n d e n c e  with a posi t ive  Hermi t i an  o p e r a t o r  T on H with a finite 
t race via  

m ( g )  = t r ( T M ) ,  M c s  (1) 

(We ident i fy  a subpace  M with its o r t hop ro j ec to r  pM on it.) 
We say that  M e ~? (H)  is posi t ive  [negat ive]  with respect  to m if, for 

any  N c M, N ~ 2e( H ), r e ( N ) > - 0  [ r e (N)_<  0]. A Jo rdan  de c ompos i t i on  o f  
a s igned measure  m is a pa i r  ( m l ,  rn2) o f  measures  on ~ ( H )  such that  
m = m l - m 2 .  A Hahn  d e c o m p o s i t i o n  co r r e sp ond ing  to m is an e lement  
M e ~ ( H )  such that  M is posi t ive  and  M l is negat ive  with respect  to m. 

A s igned measure  m is said to be: (1) b o u n d e d  i f  sup{]m(P) l :  P c  
~ ( H ) } < o o ;  (2) s e m i b o u n d e d  if  inf{m(Px):  x c H } > - o o  ( Ix  is the one-  
d imens iona l  subspace  o f  H s p a n n e d  over  x ~ 0); (3) n-finite i f  there  is a 
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system of mutually orthogonal subspaces {Ma: a ~ A }  such that H =  
O.~A-Ma, [m(Ma)[< oo for each a ~ A ,  and card A = n .  In particular, if 
n = No (the cardinal of  all integers), we say that m is o--finite. We recall that 
by Oi~ i  P~ we mean the join of  mutually orthogonal subspaces {P~: i ~ I}. 

Sherstnev (1974) proved that if m is a finite, bounded, signed measure 
on ~ ( H )  of a separable Hilbert space H, dim H ~ 2, then m is expressible 
via (1), and, moreover, m admits Hahn and Jordan decompositions. This 
result has been generalized by Drisch (1979) to all bounded,  signed measures 
on 5 f (H)  of a Hilbert space H whose dimension is a nonmeasurable 
cardinal ~ 2. We recall, according to Ulam (1930), that a cardinal I is said 
to be nonmeasurable if there is no nontrivial, positive, finite measure ~, on 
the power set 2 A of a set A, card A = / ,  such that ~,({a}) = 0 for any a ~ A. 
For example, any finite cardinals, No, e (cardinal of  reals) (under the 
continuum hypothesis) are nonmeasurable.  

Dvure6enskij (1987) has proved that, for any finite, signed measure 
m on a quantum logic ~ ( H )  of a Hilbert space H whose dimension is a 
nonmeasurable cardinal ~ 2, (1) holds iff m is bounded from below on all 
one-dimensional subspaces of  H. 

Without loss of generality, we shall suppose in the following that any 
signed measure attains from values + ~  only +~z. By a Gleason measure 
we shall mean any semibounded, signed measure. 

First we remark that, for any finite-dimensional Hilbert space H, 
dim H->2 ,  there is an unbounded finite measure (Sherstnev, 1974; 
Dvure~enskij, 1987); consequently, there are signed measures that admit 
no Jordan decompositions. 

A bilinear form is a function t : D( t )  x D( t )  --> C, where D( t )  is submani- 
fold in H, called the domain of definition of t, such that t is linear in the 
first argument and antilinear in the second one, and t(ax, y) = at(x, y) for 
all x, y ~ D( t ) ,  a ~ C. A bilinear form is: (1) symmetric if t(x, y) = t(y, x) 
for all x, y 6 D( t ) ;  (2) positive if t(x, x) >- 0 for all x ~ D( t ) ;  (3) semibounded 
if there is a constant K_>0 such that t ( x , x ) > - - K  for all x 6 D ( t ) .  I f  
p c  D( t ) ,  then by t o P we mean a bilinear form defined by t o P(x, y ) :=  
t(Px, Py), x, y 6 H .  I f  t o p  is induced by a trace operator, we say t o p e  
Tr(H) ,  where T r (H)  is the class of  all trace operators in H. 

2. PROPERTIES OF SIGNED MEASURES 

The positive and negative variations m + and m -  of a signed measure 
m are defined by 

m+(M)  = s u p { m ( N ) :  N c  M} 
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and 

re - (M)  = - in f{m(N) :  N c  M} 

The total variation of m is the map ]m I := m++ m-.  

Lemma 1. If  (ml, m2) is a Jordan decomposition of a signed measure 
m, then ml >- m + and m2 >- m -. 

Proof We have 

m+(M) = sup{re(N): N c M} = sup{ml(N) - m2(N): N c M} 

~ sup{ml(N):  N ~  M } =  ml(M) .  

Similarly, one can prove the second assertion. [] 

Hence, in order to construct a Jordan decomposition for a finite m, it 
is enough to find a finite measure ml -> m +. If  we define m2 = ml - m, then 
m2 is a measure, too, and (ml, m2) is the desired Jordan decomposition. 
Moreover, if (ml, m2) is any Jordan decomposition for m, and mo is a finite 
measure, then (ml+  too, m2+ too) is a Jordan decomposition for m, too. 

Remark 1. Theorem 7 in Dvure6enskij (1987) says that if a finite 
signed measure m admits a Jordan decomposition, then the Oleason theorem 
holds for m, and, consequently, there exists a Hahn decomposition corre- 
sponding to m. The first part of Proposition 6 in Dvure6enskij (1987) 
shows that on ~ ( H ) ,  dim H = 2, there are signed measures that attain no 
Jordan decompositions; however, any one-dimensional subspace of H forms 
a Hahn decomposition corresponding to m. 

Therefore, it would be interesting to examine whether the existence of 
a Hahn decomposition implies the existence of a Jordan one when 
dim H->3.  

Lemma 2. Let m be a signed measure on ~ ( H )  of an arbitrary Hilbert 
space H. Let M ~ ( H )  be such 0 <  m(M)-~oo. Then there is N, N ~  M, 
that is positive with respect to m and r e ( N ) >  O. 

Proof Either M itself is positive with respect to m or it contains 
subspaces of  negative measure. In the latter case let nl be the smallest 
positive integer such that there is a subspace MI c M with m(Ml) < -1/n~.  

Proceeding inductively, let nk be the smallest positive integer for which 
there is Mk such that Mk c M k-1 n (@/=1Mi) • and m(Mk) < --1~rig. If  we put 

c~ ~ N N = M (@~=1Mi) • then M = 0@i=1Mi .  Hence, 

m ( M ) = m ( N ) +  E re(M,) 
i = l  
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The series on the right-hand absolutely converges since m ( O i ~  Mi)--  
~ m(M~) is finite. Thus, ~i  1/n~ converges, and we have n~ -~ oo. It is clear 
that re(N) > O. 

To show that N is positive with respect to m, let e > 0 be given. Since 
n~-~ oo, we may choose i so large that 1/(n~- 1)<  e. Since 

N can contain no subspaces with measure less than -1/(ni-1)  which is 
greater than - e .  Hence, N contains no subspaces less than - e .  Since e is 
an arbitrary positive number,  it follows that N can contain no subspaces 
of  negative measure, and, therefore, must be positive with respect to m. �9 

3. F I N I T E - D I M E N S I O N A L  HILBERT SPACE 

First we investigate the possibility of Jordan and Hahn decompositions 
for Gleason measures on a quantum logic of  a finite-dimensional Hilbert 
space. 

Theorem 3. Let m be a Gleason measure on ~ ( H )  of a finite- 
dimensional Hilbert space H for which there is a three-dimensional Q with 
m(Q)  < ~ .  Then there exist Jot'dan and Hahn decompositions correspond- 
ing to m. 

Proof First we suppose that re(H) is finite. Due to Dvure~enskij 
(1987), m is representable via (1). Let T + and T -  be the positive and 
negative parts of  the Hermitian operator T. Then (ml ,  m:), where m~(M) := 
t r (T+M),  mz(M) := t r ( T - M ) ,  M ~ ~T(H), is a Jordan decomposit ion for 
m. Now let H + and H -  be subspaces generated by proper  vectors of  T + 
and T-.  Then they are positive and negative with respect to m, and H + O  
H-=H.  

Now we suppose re(H) = o0. Proposition 2 and Theorem 3 in Dvure~en- 
skij (1987) imply that there is a subspace P, 3-<dim P-< n -  1, such that 
re(M) <o0 if M c  P. Then mo := ml~(P) is a bounded,  signed measure and 
m has the form 

m(M)={mo(M) if M o P  
otherwise (3) 

The first part  of the present theorem shows that for mo there is a Jordan 
+ + 

decomposition (too, too), and, moreover, mo and mo are representable via 
(1) on ~ ( P )  through positive Hermitian operators T~- and To in a Hilbert 
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space  P. Let  iro be the  ex tens ion  to whole  H defining Tox  = 0 for  any 
x 2 P. Define two measures  m~ and  m2 on Le(H)  via 

m~(M)={m~(M) i f  M o P  
otherwise  

m2(M) = t r ( T o M ) ,  M c ~ ( H )  

The s imple  ver i f icat ion shows that  ( m l ,  m2) is a Jo rdan  d e c o m p o s i t i o n  
for  m. 

Let now P=P§ where  P§ and  P_ are posi t ive  and  negat ive,  
respect ively ,  with respect  to mo, Define M_ = P_, M§ = M•  The  M_ is 
negat ive  with respect  to m. Let now M c M+. Then ei ther  M r P or  M c P. 
In  the  first case m(M) = 00, and  in the la t ter  one we can show that  M c p§  
that  is, m(M)>-O, and  this finishes the proof .  []  

4. DECOMPOSITIONS FOR UNBOUNDED 
GLEASON MEASURES 

Dvure~enski j  (1987) p roved  the fo l lowing theorem,  which  is a gen- 
e ra l iza t ion  o f  G l e a s o n ' s  t heo rem to u n b o u n d e d ,  s e m i b o u n d e d  s igned 
measures .  

Theorem 4 (A. R. G leason) .  Let n be a ca rd ina l  and  let m be an n-finite 
G l e a s o n  measure ,  m(H) = oo, on a q u a n t u m  logic  Z f ( H )  o f  a Hi lbe r t  space  
H whose  d imens ion  is a n o n m e a s u r a b l e  ca rd ina l  # 2. Then there  is a un ique  
symmet r ic  s e m i b o u n d e d ,  b i l inea r  form t with a dense  d o m a i n  such that  

m(p)={t~top i f  m ( P )  < oo 

otherwise  (4) 

Moreover ,  i f  m(Oa~ a Ma) < o{3, t h e n  

m(a~A Ma) = ~a~a m(Ma) (5) 

In the  fo l lowing we shall  invest igate  the poss ib i l i ty  o f  H a h n - J o r d a n  
d e c o m p o s i t i o n s  for  G l e a s o n  measures  with re(H)=oQ 

Let t be a symmet r i c  b i l inea r  form with a d o m a i n  D(t). We say that  
a n u m b e r  ,t is a lower  p r o p e r  value o f  t on a subspace  M of  H if  

h = inf{t(x,  x) :  Ilxll = 1, x ~ M n D ( t ) }  

The unit  vec tor  x~ D(t) n M is a p r o p e r  vec tor  o f  t on M co r r e spond ing  
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to the lower proper  value h if 

)t = t(x, x) 

Lemma 5. Let t be a symmetric,  semibounded,  bilinear form on D(t) .  
Let there exist XoE D(t ) ,  IIxll = 1, such that  t(Xo, Xo) = inf{t(x, x): Ilxll = l, 
x e D ( t ) } .  I f y  L x o  and y ~ D ( t ) ,  then t (xo ,y)=O.  

Proof Let K = - t ( X o ,  Xo). From the Schwarz inequality we have 

0 <--It(Xo, y ) +  K(xo,  Y)I = ]t(Xo, Y)I 
--< [(t(xo, Xo) + K 1[ t(y, y) + K Ily 112)]1/2 

= 0  �9 

Lemma 6. Let the condit ions o f  Theorem 4 hold and let t be a bilinear 
form from (4). Let )t < 0  be the lower proper  value o f  t on m. Denote  
M() t )  = {x ~ M c~ D( t ) :  t(x, x) = )t Iix112}. Then M() t )  is a finite-dimensional 
subspace o f  H. 

Proof It is evident M ( ) t ) ~  ~ .  We claim to show that  if xl, x2c M()t ) ,  
then x~+x2~ M()t) ,  then x , + x 2 c M ( ) t ) .  Suppose  x~ and x2 are linearly 
independent  vectors. Since x~ + x2 c D( t ) ,  there is a Hermit ian opera tor  T 
on N = P x ,  v Px2 such that  t ( z , z ) = ( T z ,  z), z ~ N .  We show that (Tz, z)<-O 
for any z ~ N. I f  not, then there is Zo ~ 0 with ( Tzo, Zo) > 0. Hence,  there are 
two or thogonal  unit vectors Zl and z2 and two numbers  /z > 0 and )to < 0 
such that Tzl = lZZl, Tz2 = )toZ2. It is evident that  )to = inf{t(z, z): z ~ N} = )t. 
Let xl = azl "k bz2, where ]a[Zq - Ib[ 2 = [[xl l[ 2. Then 

t(Xl, Xl)=  (Tx,, Xl)= ~lal2+)tolb[= = A0llXll] 2 

Hence,  Ibl 2 = IiXl II 2, a = 0, w h i c h  gives x~ = bz2. Analogously,  we obtain that  
x2 = cz2 for some scalar c. In other words,  xl and x2 are linearly dependent ,  
which is a contradict ion.  Therefore,  ( Tz, z) <- 0 for  any z E N, so that Tx~ = 
Axi, i = 1, 2, and, moreover ,  x l+x26  M()t) .  

N o w  suppose that in M() t )  there are infinitely many linearly indepen- 
dent vectors, {e,},~=l say. Using the G r a m - S c h m i d t  or thogonal izat ion pro- 

e o0 cess to { ,},=1, we may find a sequence o f  or thonormal  vectors {f,},~=l in 
M(A).  Then 

m PT,, = • m , ) =  t ( f , , f , ) = - ~  
n=l n=l 

Hence,  M() t )  is a finite-dimensional subspace o f  H. �9 

We need the following important  assumption:  
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Hypothesis. For  any ~r-finite Gleason measure m on ~ ( H )  o f  a separable 
Hilbert space H, there is a unit vector x such that 

m(P~) = inf{m(Py): ]]y][ = 1, y e H} (6) 

I f  m is a finite Gleason measure,  then the hypothesis  is true (even if 
H has d imension of  a nonmeasurab le  cardinal r 2). The same is true if a 
bilinear form t f rom Theorem 4 is closed, that  is, if x , ~ x ,  { x , } c  D(t),  
t(X~--Xm, X,--Xm)~O imply x ~ D ( t )  and t ( x ~ - x , x ~ - x ) ~ O ,  moreover,  
Jo rdan  and Hahn  decomposi t ions  are obtainable.  Indeed,  there is a unique 
self-adjoint operator  T =  T + - T _ ,  where D ( t ) =  D(TI+/2), and due to the 
spectral theorem, 7"_ is bounded ,  such that t(x, x) = 
(Tl+/2x, T~+/2x)-(T_x,x), x ~ D ( t ) .  Moreover,  T _ ~ T r ( H )  and lIT_I[ = 
- in f{ t (x ,  x): [Ix]] = 1, x ~ D(t)}.  Let E be a spectral measure corresponding 
to T. Then M + := E([0 ,  ~ ) )  and M -  := E ((-o0,  0)) are, respectively, positive 
and negative with respect to m. A bilinear form t+(x, x):= (Tl+/2x, T~+/2x) 
with D(t+)= D(T~+/2) determines a tr-finite measure m+ on ~ ( H )  via (4) 
and t_(x, x):= (T_x, x) determines a finite measure m_. Moreover ,  m = 
m+ - m_. 

I do not  know if the above hypothesis  is true in general. 

Theorem 7. ( H a h n - J o r d a n  decomposi t ion) .  Let n be a cardinal and let 
m be an n-finite Gleason measure on 5 f ( H )  o f  a Hilbert space H whose 
dimension is a nonmeasurab le  cardinal ~ 2 and let re(H)--oo. Under  the 
hypothesis,  m admits H a h n  and Jo rdan  decomposi t ions .  

Proof Let t be a symmetr ic  bilinear form determined by m whose 
existence follows from Theorem 4. Put A1 = inf{t(x, x): Ilxll = 1, x ~ D(t)}.  
Hence,  there is a sequence o f  unit vectors {Xn}n~_-i belonging to D(t)  such 
that A1 = l i m ,  t(xn, x,). Put H1 = V,~ Px. and m~ := m[Sf(H1). Then ml is 
a or-finite Gleason measure  on ~ ( H 1 )  and, due to the hypothesis,  there is 
a unit vector e~ c D(t)  such that A1 = t(e~, e~). 

Let A2 = inf{t(x, x): x E D(t),  [Ix[I = 1, x ~ M,}, where M1 = P• Then e l .  

either A2-> 0 or A2 < 0. In  the first case Pe~ is negative and M1 positive with 
respect to m. In the second case, as above, we find e2c D(t)  n M~, Ile21l = 1, 
such that A2 = t(e2, e2). 

Proceeding inductively, suppose that we have constructed or thonormal  
vectors ei c D(t)  c~ Mi, i = 1 . . . . .  n, and we find negative numbers  A1 -< A2--- < 
�9 ' ' - < a n < 0  such that A~=inf{ t (x ,x ) :x~D(t )c~M~,  ] lxl l=l} and A~= 
t(e~, e~), where M~ = (@j=~a P~j)~. 

There are two possible cases: (1) After a finite number  o f  steps we 
obtain a subspace M,~o in which t(x, x) >- O, x ~ D(t)  n M,~o; (2) t(x, x) < 0 
on D(t)  n M~ for any integer n/> 1. 
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The first case gives us t (x ,x )<O for any x ~ D ( t ) ~ M ,  o. In fact, let 
x = ~ ~  1 aiei ~ M, on D(t). Then t(x, x) = Z ~  aiajt(ei, ej) and, following 

- -  n o Lemma 5, t(e~, ej) = 0 whenever  i # j .  Hence,  t(x, x) - ~  ~=1 [ail2hi < 0, which 
entails that  M,  o is negative with respect to m. 

In the latter ease we claim to show that if M = (G~= 1 Pe.) • = A . ~  ~ M~, 
then, for any x ~ M n D(t) ,  Ilx[[ = 1, t(x, x) >- O. I f  not, then x c M~ for any 

- -  m 0o  n > l .  Thus, h ,<- t (x ,x )<O.  On the other hand, (On= l  Pc~ = ~ = ~  h ,  < 0 .  
The convergent  series implies ;t, ~ 0, that is, t(x, x )=  O. 

Moreover ,  t(x,x)<-O on M • In fact, since m ( M •  there is a 
unique Hermit ian operator  T ~ T r ( M  • such that  t( x, x) = ( Tx, x ), x c M ~. 
Represent ing x =y~o~  (x, e , )e ,  and using Lemma 5, we have t(x, x)<-O. 

We assert that  M (in case 1 we put M = M,~) is positive with respect 
to m. I f  not,  there is N c M such that re(N) < 0. Hence,  there is a Herrnitian 
operator  TN ~ T r ( N )  such that m(Q)=tr(TNQ),  Q c  N. Therefore rnN:= 
mlLP(N) is totally additive and, consequently,  re(N) = 3~i m(P~,) >- 0, where 
{x~} is an or thonormal  basis in N, and this gives a contradiction.  

Put M+ = M, M_ = M "  and define two positive symmetr ic  bilinear 
forms t+, t_ via 

D(t+) = D(t)  = D(t_) 

t+(x, x) = t(M+x, M+x) 

t_(x, x) = - t ( M _x ,  M_x) 

Since M c D(t),  t+ and t_ are defined well. Choose  x ~ D(t) and calculate 

t( x, x) = t( M+x, M+x ) + t( M_x, M_x)  + 2  Re t( M_x, M+x ) 

Since m(M_|  where y = M+x, we have that t is cont inuous  on 
M_ O Py. Therefore,  

c o  

t (m_x,  m+x)= ~ (M_xe , ) t ( e , ,  m+x) 
n = l  

Lemma 5 implies t( M_x, M+x) = 0 = t( M+x, M_x ). Hence,  we obtain 

t ( x , x ) = t + ( x , x ) - t _ ( x , x ) ,  x ~ D ( t )  

Now we construct  a Jordan  decomposi t ion.  Let T be the above positive 
Hermitian operator  belonging to Tr(M_).  It may be extended to a positive 
Hermitian opera tor  on whole H with the same trace, denoted as T_. Define 
a finite measure m2(P)=tr(T_P),  P c  5r Then ml determined by 

m~(M) = re (M)  + m2(M) 

is an n-finite Gleason measure on ~ ( H ) .  Moreover ,  Im~(P~)[ < 00 iff rn(P~) < 
0o. Hence,  due to Theorem 4, ml is determined by a symmetric bitinear 
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form equal  to t+, so tha t  rn~ is a posi t ive  n-finite measure ,  and  m = rn~ - m2, 
which finishes the proof .  1 

Corollary 8. U n d e r  the  condi t ions  o f  Theo re m 7, m is to ta l ly  addi t ive  
on A~ and  m ( P )  < c o  iff t o P ~  T r ( H ) .  

Proof F r o m  Theo rem 7 we have that  m = m I -- m 2. Here  m I is n-finite 
and  m2 is a finite measure .  Due to Dvure6enski j  (1986), ml is to ta l ly  
addi t ive  and  ma(P) < ~ iff tl o P e T r ( H ) ,  where  t~ is a posi t ive  symmet r i c  
b i l inear  form co r r e spond ing  to m~ via (4). ! 

F ina l ly  we show that  in some pa r t i cu la r  cases we may  find Hahn  and  
Jo rdan  decompos i t i ons  for  o--finite G l e a s o n  measures  wi thout  cal l ing u p o n  
the hypo thes i s  given earl ier .  

Let {e,},~176 be  an o r t h o n o r m a l  basis  in H, d im H = No, which is a par t  
o f  a H a m e l  basis  {g,: t e T}. F ix  a uni t  vec tor  g~ f rom the Hamel  basis  tha t  
does  not  be long  to the  o r t h o n o r m a l  one.  Define an ope ra to r  B via 

B(~i~ro ai&) = a,og~, where  To is any  finite subset  o f  T conta in ing  to, and  
pu t  t(x, x)  = (Bx, Bx) ,  x c H. Then  t is a pos i t ive  symmet r ic  b i l inea r  form. 

T ~ , _ _ - .  >_ Choose  a posi t ive  o p e r a t o r  = ~ , = 1  A,Pe ,  where  A ~ > A 2 >  �9 0, A I >  1, 
,~--1 A, < o0. Define a s e m i b o u n d e d ,  symmetr ic ,  b i l inea r  form p with D(p)  = 

H via 

o o  

p ( f  g) = t ( f  g ) +  ~, (1 - A . ) ( f  e . ) ( e . ,  g)  
n = l  

This form is not  c losed  and  it de te rmines  via (4) a o,-finite G l e a s o n  
measure  m on Af(H)  such that  m ( M ) < c o  iff d im M < o o .  In this case we 
may  find f ini tely many  vectors  e l , . . . ,  e, 0 such that  1 - A i = i n f { p ( f , f ) :  

f e  Mi ,  Ilfl[ = 1}, i =  1 , . . . ,  no, where  Mi = (@j-]  Pej) • a n d  no is an integer  
such that  A~ o > 1 and  A,o+ 1 --< 1. It is ev ident  tha t  1 - Ai = p(ei,  ei), i = 1 , . . . ,  no. 
Then M_ =@7~ Pe, and  M+ = M •  are negat ive  and  posi t ive,  respect ively ,  
with respect  to m. S imi la r ly  as in the last  theorem,  we may  find a Jo rdan  
d e c o m p o s i t i o n  for m. 
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