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Hahn—Jordan Decomposition for Gleason Measures

Anatolij Dvurecenskij'
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The possibility of the Hahn-Jordan decomposition for n-finite signed measures,
where n is a cardinal, defined on a quantum logic of all closed subspaces of a
Hilbert space whose dimension is a nonmeasurable cardinal # 2, is investigated.

1. INTRODUCTION AND PRELIMINARIES

A signed measure on a quantum logic Z(H) of all closed subspaces
of a Hilbert space H (not necessarily separable) over the field C of real or
complex numbers is a map m: L(H)->[~o0, o] such that: (1) m(0)=0;
{2) m is o-additive on all sequences of mutually orthogonal subspaces of
F(H); (3) it attains at most one of the possible values +c0. A positive
signed measure is said to be a measure.

The well-known theorem of Gleason (1957) says that any finite measure
m on ¥(H) of a separable Hilbert space H, dim H # 2, is in one-to-one
correspondence with a positive Hermitian operator T on H with a finite

trace via
m(H)=tr(TM), Mec P(H) (1)

(We identify a subpace M with its orthoprojector P on it.)

We say that M € #(H) is positive [negative] with respect to m if, for
any Nc M, Ne #(H), m(N)=0 [m(N)=0]. A Jordan decomposition of
a signed measure m is a pair (m,, m,) of measures on £(H) such that
m=m; —m,. A Hahn decomposition corresponding to m is an element
M e #(H) such that M is positive and M ™ is negative with respect to m.

A signed measure m is said to be: (1) bounded if sup{|m(P)|: Pe
P(H)}<0; (2) semibounded if inf{m(P,): xe H}> - (P, is the one-
dimensional subspace of H spanned over x # 0); (3) n-finite if there is a
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system of mutually orthogonal subspaces {M,:ac A} such that H=
Puca M, |m(Ma)|<oo for each a€ A, and card A=n. In particular, if
n =&, (the cardinal of all integers), we say that m is o-finite. We recall that
by @;.; P, we mean the join of mutually orthogonal subspaces {P;: ie I}.

Sherstnev (1974) proved that if m is a finite, bounded, signed measure
on Z(H) of a separable Hilbert space H, dim H # 2, then m is expressible
via (1), and, moreover, m admits Hahn and Jordan decompositions. This
result has been generalized by Drisch (1979) to all bounded, signed measures
on Z(H) of a Hilbert space H whose dimension is a nonmeasurable
cardinal # 2. We recall, according to Ulam (1930), that a cardinal I is said
to be nonmeasurable if there is no nontrivial, positive, finite measure v on
the power set 2* of a set A, card A= I, such that v({a}) =0 for any a € A.
For example, any finite cardinals, X,, ¢ (cardinal of reals) (under the
continuum hypothesis) are nonmeasurable.

Dvureéenskij (1987) has proved that, for any finite, signed measure
m on a quantum logic £(H) of a Hilbert space H whose dimension is a
nonmeasurable cardinal # 2, (1) holds iff m is bounded from below on all
one-dimensional subspaces of H.

Without loss of generality, we shall suppose in the following that any
signed measure attains from values +o0 only -+oo. By a Gleason measure
we shall mean any semibounded, signed measure.

First we remark that, for any finite-dimensional Hilbert space H,
dim H =2, there is an unbounded finite measure (Sherstnev, 1974;
Dvurecenskij, 1987); consequently, there are signed measures that admit
no Jordan decompositions.

Abilinear formis a function ¢ : D(t) x D(t)~> C, where D(t) is submani-
fold in H, called the domain of definition of #, such that ¢ is linear in the
first argument and antilinear in the second one, and t(ax, y) = at(x, y) for
all x, ye D(t), a € C. A bilinear form is: (1) symmetric if ¢(x, y)=t(y, x)
forall x, y € D(t); (2) positive if t{x, x) = 0 for all x € D(¢); (3) semibounded
if there is a constant K =0 such that #(x,x)=—-K for all xe D(¢t). If
Pc D(t), then by t° P we mean a bilinear form defined by ¢ P(x, y):=
t(Px, Py), x, ye H. If to P is induced by a trace operator, we say t° P¢
Tr(H), where Tr(H) is the class of all trace operators in H.

2. PROPERTIES OF SIGNED MEASURES

The positive and negative variations m™ and m~ of a signed measure
m are defined by

m* (M) =sup{m(N): Nc M}
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and
m (M)= —inf{m(N): Nc M}
The total variation of m is the map |m|=m™+m".

Lemma 1. If (m,, m,) is a Jordan decomposition of a signed measure
m, then m,=m" and m,=m".

Proof. We have
m*(M)=sup{m(N): N< M}=sup{m,(N)—m,(N): N< M}
=sup{m;(N): Nc M}=m,(M).
Similarly, one can prove the second assertion. M

Hence, in order to construct a Jordan decomposition for a finite m, it
is enough to find a finite measure m, =m". If we define m,=m, — m, then
m, is a measure, too, and (m,, m,) is the desired Jordan decomposition.
Moreover, if (m,, m,) is any Jordan decomposition for m, and m, is a finite
measure, then (m,+my, my+my) is a Jordan decomposition for m, too.

Remark 1. Theorem 7 in Dvureéenskij (1987) says that if a finite
signed measure m admits a Jordan decomposition, then the Gleason theorem
holds for m, and, consequently, there exists a Hahn decomposition corre-
sponding to m. The first part of Proposition 6 in Dvurecenskij (1987)
shows that on £(H ), dim H =2, there are signed measures that attain no
Jordan decompositions; however, any one-dimensional subspace of H forms
a Hahn decomposition corresponding to m.

Therefore, it would be interesting to examine whether the existence of
a Hahn decomposition implies the existence of a Jordan one when
dim H =3.

Lemma 2. Let m be a signed measure on £(H) of an arbitrary Hilbert
space H. Let M € £(H) be such 0<m(M)=o0. Then there is N, Nc M,
that is positive with respect to m and m(N)>0.

Proof. Either M itself is positive with respect to m or it contains
subspaces of negative measure. In the latter case let n, be the smallest
positive integer such that there is a subspace M; < M with m(M,) < —1/n,.

Proceeding inductively, let n, be the smallest positive integer for which
there is M, such that M, = M n (D2} M,)* and m(M,) < ~1/n,. If we put
N=Mn (@2, M,)*, then M = NOP 2, M,. Hence,

m(M)=m(N)+ 3, m(M,)



516 Dvurecenskij

The series on the right-hand absolutely converges since m(@iL, M,) =
Y21 m(M,) is finite. Thus, Y, 1/ n; converges, and we have n; »> 0. It is clear
that m(N)>0.

To show that N is positive with respect to m, let £ > 0 be given. Since
n; > 00, we may choose i so large that 1/(n;, —1) <e. Since

NCMm(.i M,)l (2)

J

N can contain no subspaces with measure less than —1/(n; —1) which is
greater than —e. Hence, N contains no subspaces less than —e. Since ¢ is
an arbitrary positive number, it follows that N can contain no subspaces
of negative measure, and, therefore, must be positive with respectto m. W

3. FINITE-DIMENSIONAL HILBERT SPACE

First we investigate the possibility of Jordan and Hahn decompositions
for Gleason measures on a quantum logic of a finite-dimensional Hilbert
space.

Theorem 3. Let m be a Gleason measure on ¥(H) of a finite-
dimensional Hilbert space H for which there is a three-dimensional Q with
m( Q) <co. Then there exist Jordan and Hahn decompositions correspond-
ing to m.

Proof. First we suppose that m(H) is finite. Due to Dvureéenskij
(1987), m is representable via (1). Let T and T be the positive and
negative parts of the Hermitian operator T. Then (m,, m,), where m,(M) =
tr(T"M), my(M)=t(T"M), Me ¥$(H), is a Jordan decomposition for
m. Now let H" and H~ be subspaces generated by proper vectors of T
and T~. Then they are positive and negative with respect to m, and H*@®
H =H.

Now we suppose m( H) = 0. Proposition 2 and Theorem 3 in Dvurecen-
skij (1987) imply that there is a subspace P, 3=<dim P=<n—1, such that
m(M) <o if M < P. Then my:= m|¥(P) is a bounded, signed measure and
m has the form

m(M)= o

{mO(M) if McP )

otherwise
The first part of the present theorem shows that for m, there is a Jordan

decomposition (mg, my), and, moreover, my and m; are representable via
(1) on Z(P) through positive Hermitian operators Ty and T, in a Hilbert
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space P. Let T; be the extension to whole H defining Tgx =0 for any
x L P. Define two measures m, and m, on £(H) via

+ .

my (M) if McpP
M)=

(M) {oo otherwise

my(M)=tre(ToM), Me%(H)

The simple verification shows that (m;, m,) is a Jordan decomposition
for m.

Let now P=P,®P_, where P, and P_ are positive and negative,
respectively, with respect to m,. Define M_=P_, M,=M=<. The M_ is
negative with respect to m. Let now M < M,,. Then either M & P or Mc P,
In the first case m(M) =0, and in the latter one we can show that M < P, ,
that is, m(M) =0, and this finishes the proof. W

4. DECOMPOSITIONS FOR UNBOUNDED
GLEASON MEASURES

DvureCenskij (1987) proved the following theorem, which is a gen-
eralization of Gleason’s theorem to unbounded, semibounded signed
measures.

Theorem 4 (A. R. Gleason). Let n be a cardinal and let m be an n-finite
Gleason measure, m(H) =0, on a quantum logic £(H) of a Hilbert space
H whose dimension is a nonmeasurable cardinal # 2. Then there is a unique
symmetric semibounded, bilinear form ¢ with a dense domain such that

trte P if m(P)<o
m(P)={ . (4)
otherwise
Moreover, if m(@ .4 M,) <0, then
m(@ M)= 3 moos) 5)
acA acA

In the following we shall investigate the possibility of Hahn-Jordan
decompositions for Gleason measures with m(H) = co.

Let t be a symmetric bilinear form with a domain D(t). We say that
a number A is a lower proper value of ¢ on a subspace M of H if

A=inf{t(x, x): |x]| =1, xe M ~ D(2)}

The unit vector x€ D(t) n M is a proper vector of 1 on M corresponding
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to the lower proper value A if
A =1t(x, x)

Lemma 5. Let t be a symmetric, semibounded, bilinear form on D(t).
Let there exist x,€ D(1), ||x|| =1, such that #(x,, xo) = inf{¢(x, x): ||x] =1,
xe D(t)}. If y L x, and y € D(1), then t(x,, y)=0. ’

Proof. Let K = —#(x,, X,). From the Schwarz inequality we have
0=t(x0, )+ K (%o, )| = |1(xo, y)|
=[(t(x0, o) + K1[t(y, ») + K |11
=0 W

Lemma 6. Let the conditions of Theorem 4 hold and let ¢ be a bilinear
form from (4). Let A <0 be the lower proper value of ¢t on m. Denote
M(A)={xe M n D(1): t{(x, x) = A|x|’}. Then M(A) is a finite-dimensional
subspace of H.

Proof. It is evident M()) # . We claim to show that if x;, x,€ M(A),
then x,+x,€ M(A), then x;+x,€ M(A). Suppose x; and x, are linearly
independent vectors. Since x,+ x, € D(t), there is a Hermitian operator T
on N =P, v P, such that t(z, z) =(Tz z), ze N. We show that (Tz,z)=0
for any z € N. If not, then there is z, # 0 with ( Tz, z,) > 0. Hence, there are
two orthogonal unit vectors z, and z, and two numbers w >0 and A, <0
such that Tz, = uz,, Tz, = A¢2,. It is evident that Ao=inf{t(z, z): ze N}=A.
Let x, = az, + bz,, where |a|’+|b|* = ||x,||>. Then

t(xy, %) =(Tx;, %) = /J«|a|2+)\0|b|2: ’\0”x1“2

Hence, |b|* = ||x,||%>, @ =0, which gives x, = bz,. Analogously, we obtain that
X, = ¢z, for some scalar c. In other words, x; and x, are linearly dependent,
which is a contradiction. Therefore, (Tz, z) <0 for any z € N, so that Tx; =
Ax;, i=1,2, and, moreover, x,+x,€ M(A).

Now suppose that in M(A) there are infinitely many linearly indepen-
dent vectors, {e,};~, say. Using the Gram-Schmidt orthogonalization pro-
cess to {e,},—,, we may find a sequence of orthonormal vectors {f,}-, in
M(A). Then

m(® Bi)= 3 mE)= 3 (s =

Hence, M(A) is a finite-dimensional subspace of H. W

We need the following important assumption:
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Hypothesis. For any o-finite Gleason measure m on £( H) of aseparable
Hilbert space H, there is a unit vector x such that

m(P;) =inf{m(P,): |y|l=1,y € H} (6)

If m is a finite Gleason measure, then the hypothesis is true (even if
H has dimension of a nonmeasurable cardinal # 2). The same is true if a
bilinear form t from Theorem 4 is closed, that is, if x,~>x, {x,}< D(7),
H{Xp = Xy Xu— X ) >0 imply xe D(¢) and t(x, —x, x, —x) >0, moreover,
Jordan and Hahn decompositions are obtainable. Indeed, there is a unique
self-adjoint operator T= T, —T_, where D(t)=D(TY?), and due to the
spectral  theorem, T_ is bounded, such that t(x,x)=
(TY?x, TY?’x)—(T_x,x), xeD(t). Moreover, T_eTr(H) and |T_|=
—inf{t(x, x): || x|| =1, x € D(1)}. Let E be a spectral measure corresponding
to T. Then M ™ == E([0, c0)) and M~ := E((—¢0, 0)) are, respectively, positive
and negative with respect to m. A bilinear form ¢, (x, x) = (TY%x, T ’x)
with D(t,)= D(T%?) determines a o-finite measure m.. on L(H) via (4)
and t_(x, x)=(T_x, x) determines a finite measure m_. Moreover, m =
my—m_.

I do not know if the above hypothesis is true in general.

Theorem 7. (Hahn-Jordan decomposition). Let n be a cardinal and let
m be an n-finite Gleason measure on #(H) of a Hilbert space H whose
dimension is a nonmeasurable cardinal # 2 and let m(H) =co. Under the
hypothesis, m admits Hahn and Jordan decompositions.

Proof. Let t be a symmetric bilinear form determined by m whose
existence follows from Theorem 4. Put A, =inf{t(x, x): | x| =1, x € D(¢)}.
Hence, there is a sequence of unit vectors {x,},., belonging to D(t) such
that A, =lim,, #(x,, x,). Put H,=\/., P, and m, = m|%(H,). Then m, is
a o-finite Gleason measure on £(H,) and, due to the hypothesis, there is
a unit vector e, € D(t) such that A, =t(e,, €,).

Let A, =inf{t(x, x): xe D(1), [|x|| =1, xe M,}, where M, = P,. Then
either A, =0 or A, <0. In the first case P, is negative and M, positive with
respect to m. In the second case, as above, we find e, € D(t) n My, |les|| =1,
such that X, =t(e,, e,).

Proceeding inductively, suppose that we have constructed orthonormal
vectors ¢,€ D(t)n M, i=1,...,n, and we find negative numbers A, < A, =<

-+=),<0 such that A, =inf{t(x,x): xe D(t)~n M, ||x||=1} and A;=
t(e;, €;), where M, =(P;} P.))".

There are two possible cases: (1) After a finite number of steps we
obtain a subspace M, in which f(x, x) =0, xe D(¢t)n M ; (2) t(x,x)<0
on D(t)n M, for any integer n = 1.
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The first case gives us t(x, x) <0 for any xe D(t)n M, . In fact, let
x=Y7" ag,€ M, nD(1). Then t(x,x)=Y%adt(e,e) and, following
Lemma 5, t(e;, ;) = 0 whenever i # j. Hence, t(x, x) =¥ /2, |a;[*A, <0, which
entails that M, is negative with respect to m.

In the latter case we claim to show thatif M = (-, P, )" = A"=1 M7,
then, for any x€ M n D(1), ||x| =1, #(x, x) = 0. If not, then x € M, for any
n=1. Thus, A, = t(x, x) <0. On the other hand, m(D,_, P, ) =Y "-1 A, <0.
The convergent series implies A, ~ 0, that is, #(x, x)=0.

Moreover, t(x,x)=0 on M= . In fact, since m(M™*)<co, there is a
unique Hermitian operator T e Tr(M™") such that t(x, x) =(Tx, x), xe M~
Representing x =Y. (x, €,)e, and using Lemma 5, we have #(x, x) =0.

We assert that M (in case 1 we put M = M, ) is positive with respect
to m. If not, there is N = M such that m(N) < 0. Hence, there is a Hermitian
operator Ty € Tr(N) such that m(Q) =tr(TyQ), Q< N. Therefore my =
m|Z(N) is totally additive and, consequently, m(N) =Y, m(P, ) =0, where
{x;} is an orthonormal basis in N, and this gives a contradiction.

Put M, =M, M_=M" and define two positive symmetric bilinear
forms 2., t_ via

D(t,)=D(t)=D(t_)
to(x, x)=t(M,.x, M x)
t_(x,x)=—t(M_x, M_x)
Since M_< D(1), t, and t_ are defined well. Choose x € D(t) and calculate
t(x, x}=t(M,x, M, x)+t(M_x, M_x)+2 Re t(M_x, M, x)

Since m(M_@® P,) <o, where y=M._x, we have that ¢ is continuous on
M_@® P,. Therefore,

t(M—xa M+x) = Z (M—x en)t(ena M+x)
n=1
Lemma 5 implies t(M_x, M, x)=0=t(M,x, M_x). Hence, we obtain
t(x, x)=t.{x,x)—t_(x,x), xeD(1)

Now we construct a Jordan decomposition. Let T be the above positive
Hermitian operator belonging to Tr(M_). It may be extended to a positive
Hermitian operator on whole H with the same trace, denoted as 7_. Define
a finite measure m,(P) =tr(T_P), Pe £(H). Then m, determined by

m(M)=m(M)+ m,(M)

is an n-finite Gleason measure on ¥£( H). Moreover, |m,( P,)| < iff m(P,) <
o0. Hence, due to Theorem 4, m, is determined by a symmetric bilinear
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form equal to t., so that m, is a positive n-finite measure, and m=m, —m,,
which finishes the proof. W

Corollary 8. Under the conditions of Theorem 7, m is totally additive
on #(H), and m(P)<coiff to PcTr(H).

Proof. From Theorem 7 we have that m = m; —m,. Here m, is n-finite
and m, is a finite measure. Due to Dvureenskij (1986), m, is totally
additive and m,(P) <o iff t, o PeTr(H), where , is a positive symmetric
bilinear form corresponding to m, via (4). W

Finally we show that in some particular cases we may find Hahn and
Jordan decompositions for o-finite Gleason measures without calling upon
the hypothesis given earlier.

Let {e,}~; be an orthonormal basis in H, dim H =N,, which is a part
of a Hamel basis {g,: t€ T}. Fix a unit vector g, from the Hamel basis that
does not belong to the orthonormal one. Define an operator B via
B(Y,. 1, «:g:) =a,g,, where T is any finite subset of T containing f,, and
put t(x, x) = (Bx, Bx), x< H. Then ¢ is a positive symmetric bilinear form.
Choose a positive operator T=),_, AP, , where A;=A,=---=0, A >1,
Yn-1 A, <. Define a semibounded, symmetric, bilinear form p with D(p) =
H via

PR =)+ Y (=M ) eng)

This form is not closed and it determines via (4) a o-finite Gleason
measure m on £(H) such that m(M) < iff dim M < 0. In this case we
may find finitely many vectors ey, ..., e, such that 1—A,=inf{p(f, f):
feM, |fl=1}, i=1,..., n,, where M, = (D] P,)” and n, is an integer
suchthat A, >1land A, ., =1.Itisevidentthat1 — A, =p(e;, &),i=1,..., ny.
Then M_=;°, P, and M, = M are negative and positive, respectively,
with respect to m. Similarly as in the last theorem, we may find a Jordan
decomposition for m.
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